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1. INTRODUCTION

In many research areas computer simulation is a very useful and

powerful technique for studying the behavior of complex real-world sys-

tems. Of course, there a number of important steps to a successful simu-

lation study (see, for instance, Gordon (1978), Kleijnen (1974), and

Law and Kelton (1982)]. Perhaps the two most critical steps are (1)

model validation, and (2) the design and analysis of the simulation ex-

periments. Careful attention to both of these steps is necessary for

a meaningful and sound simulation study. For instance, if a simulation

model is not sufficiently representative of the system under study (i.e.,

valid), the output data may be misleading and result in erroneous con-

clusions about the system. On the other hand, even if the model satis-

factorily mimics the system, an optimal experimental design is needed

in order to derive maximum benefit from the time and cost incurred.

As in any experimental investigation, a simulation study requires

careful planning, data collection, output data analysis, and proper in-

terpretation of the experimental data. In general, the problem of de-

sign is to ensure that data relevant to the proposed study is obtained

in as efficient a manner as possible. We are primarily concerned in

this paper with the problem of experimental design; we will assume that

the simulation model is an adequate representation of the system under

consideration. [General discussions of simulation validation are given

by Gass (1977), Law and Kelton (1982), Naylor and Burdick (1975), Schel-

lenberger (1974), and Van Horn (1971).] We will also assume that the a

computer program (code) used to execute the simulation model has been
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properly debugged so that the system model functions as intended.

There are several characteristics that distinguish simulation

experimentation from statistical experimentation in general. First,

we have much more control over the experimental conditions than

we do in the real world. This often allows us to use the simulation

model to examine a number of "what if" questions about which little or

no data currently exists. For example, using a simulation model of a

nuclear power plant, we may wish to determine what would happen in the

event of a loss-of-coolant accident. Second, we can control much

of the underlying randomness in a simulation by controlling the streams

i0 of pseudorandom numbers that drive and determine the stochastic events

that occur in a simulation. This capability often allows us to

use variance-reduction techniques to obtain estimators having greater

statistical precision. Moreover, there is generally no need for random-

ization of experimental conditions and run order to guard against the

inadvertent introduction of systematic biases and variation. Such pro-

tection is usually provided by the random-number generators already

present in the simulation model. Third, many simulation developers

attempt to take into account as many detailed aspects of the system un-

der investigation as possible. As a result, many simulation studies are

characterized by the inclusion of an exceptionally large number of in-

put variables. Finally, the problems of missing data and outliers which

can handicap and reduce the effectiveness of any experimental investi-

gation are generally of no concern in simulation studies. Outliers

(i.e., discordant or contaminant observations) cannot arise because a

simulation model is essentially a "closed" system; missing output data

-2-
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can occur only if the time and/or funds allocated for experimentation

are insufficient.

It is beyond the scope of this paper to consider all the many facets

of experimental design; the current literature in this subject area is

vast. Instead we choose to discuss the salient aspects of four selected

topics which we feel are of particular interest and relevance in the simu-

lation context. These are: (1) Identification of the important factors

(i.e., input variables); (2) Investigation of the statistical relation-

ship between the output and input variables; (3) Determination of the

combination of factor levels for which the response (i.e., output vari-

able) is optimized; and (4) The use of variance reduction techniques.

We address each of these topics in the ensuing sections. Through-

out our discussions we assume that there is but a single response vari-

able, and we restrict ourselves to the situation in which all the fac-

tors are quantitative.

2. FACTOR SCREENING

As noted previously, simulation models often involve a great many

factors. Such models, however, because of their size and running time,

can require a prohibitively large and costly experimental program to

study their behavior. Therefore we may want to concentrate our analysis

on the set of "most important" factors. Factor screening methods [see,

for instance, Kleijnen (1975), Montgomery (1979), and Smith and Mauro

(1982)) are statistical methods that attempt to identify, efficiently

and economically, a set of most important factors. Once the most im-
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portant factors have been identified, subsequent simulation experi-

mentation can concentrate more intensively on these critical factors,

thereby eliminating experimentation with relatively unimportant fac-

tors which can needlessly consume resources. Screening experiments,

then, are not usually an end in themselves but are customarily per-

formed as a preliminary step in the experimentation process.

In screening experiments, we want (a) to detect as many important

factors as possible, (b) to declare important as few unimportant fac-

tors as possible, and (c) to expend as few runs as possible. Thus,

one must generally consider both how many runs a screening strategy re-

quires and how accurately it identifies factors. Although one may wish

to obtain finer factor groupings than simply "important" or "unimportant".
aI

to effectively accomplish this would most certainly require more screening

runs than are normally reasonable or affordable. In any event, the

greater (lesser) the degree of importance a factor has, the larger

(smaller) should be the probability of classifying that factor as im-

portant.

In screening designs, a relatively small number of factor levels

is generally employed; in fact, most screening experiments are two-level

experiments. There are two reasons for this. First, two levels of each

factor are usually sufficient to detect which factors have major effects.

Second, and more importantly, two-level designs maximize the number of

factors that can be examined in a given number of runs because the num-

ber of factor level combination@ is minimized when each factor has only

two levels.

The full statistical model for a two-level complete factorial ex-
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periment for k factors contains 2k terms: a mean effect, k main ef-

fects, (k) two-factor interaction effects, (k) three-factor interaction

effects, ..., a k-factor interaction effect. To estimate every effect

in the full model, one must run the complete factorial experiment con-

sisting of N - 2k runs. This many runs, however, is rarely practical

in simulation experimentation; for even a moderate number of factors

the implications in terms of money invested and overall run time can be

quite overwhelming. However, if we can reasonably assume that certain

higher order interactions are negligible, we can make a less than com-

plete investigation by running only a fraction of the 2k treatment com-

binations.

In this section, we will consider two basic situations: (1) the

unsaturated/saturated case, and (2) the supersaturated case. In the

first case, one can afford to invest more runs than there are factors,

but still considerably less than 2 k; in the second case, the number of

runs available for screening is less than or equal to the number of fac-

tors to be screened. For the remainder of this section we present and

discuss those experimental plans which are particularly suited for

screening in these two cases. Before proceeding with the main dis-

cussion, however, we digress momentarily to review a few fundamental

terms and concepts in design theory.

2.1 Orthogonality, Confounding, and Resolution

The levels to be run in a two-level screening experiment can be

conveniently displayed in a design matrix such as is given in Table 1.

-5-
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We have arbitrarily coded the two levels of each factor as +1 (high)

and -I (low). In run #1, for example, all factors except x4 are held

at their high level.

When ±1 coding is used, we call two design columns orthogonal if

the sum of their cross products is zero. Equivalently, two columns

are orthogonal if their factor levels are balanced, i.e., are different

just as often as they are the same. Orthogonality is a desirable de-

sign property because estimates of the (main) effects of orthogonal

factors are independent. In other words, if one of two orthogonal fac-

tors has an effect, it cannot cause the other, perhaps erroneously, to

appear to have an effect. For the design matrix in Table 1, x1 and x31

x2 and x5, and x3 and x4 are orthogonal.

If two design columns are not orthogonal, we call the corresponding

factors confounded. When two factors are confounded, it is impossible

to statistically separate their effects. In the extreme case, two fac-

tors are completely confounded if their design columns are identical or

are reflections of one another. For example, in Table 1, xI and x4 are

completely confounded. Factors xI and x2* on the other hand, although

not completely confounded, are not orthogonal either. In this case, we

say that they are partially confounded.

The type of confounding that a design possesses is known as its

resolution. In a design of resolution R, a p-factor interaction is un-

confounded with any other effect containing less than R-p factors. For

example, in a resolution III design, main effects are not confounded with

other ain effects; in a resolution IV design, main effects are not con-
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founded with other main effects or two-factor interactions. The prin-

cipal implication of a resolution R design is that p-factor interactions

(p < R/2) are estimable under the assumption that all interactions of

order R-p or more are negligible.

The resolution of a design is often restricted by the number of

runs that can be made. For instance, in order for all columns in a de-

sign matrix to be mutually orthogonal, the number of runs must exce-

the number of factors. Consequently, we can obtain unconfounded esi

mates of main effects only in the unsaturated/saturated case. It f

lows that in the supersaturated case, design resolution must be lesh _aan

R - III, i.e., we cannot avoid confounding main effects in some manner.

2.2 The Unsaturated/Saturated Case

We now present two types of designs that are especially useful in

the unsaturated/saturated case. These are Plackett-Burman (PB) designs

and resolution IV foldover designs.

2.2.1 Plackett-Burman Designs

PB designs are specially constructed two-level minimal resolution

III designs for studying up to k - 4m-1 factors in N = 4m runs. PB de-

signs, therefore, are only available for numbers of runs that are mul-

tiples of four. Assuming that all interactions can be ignored, unbiased

estimation of the k main effects is possible in a PB design. The arrange-

lents for these designs were derived by Plackett and Burman (1946); see
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also Raghavarao (1971). It can be noted that when N is a power of two,

PB designs are the same as the well-known resolution 11 2 - fractional

factorial designs, which are discussed in detail by Box and Hunter (1961).

To analyze PB designs one can use standard analysis of variance

methods and conduct formal significance testing. A useful alternative

approach is to plot the estimated effects on normal probability paper.

In this technique, due to Daniel (1959), negligible effects should fall

approximately along a straight line, while large effects should tend to

fall far from the line. The latter method of analysis is especially

helpful when the design is saturated (i.e., when N - k-i and no degrees

of freedom are left to estimate experimental error) or when only a few

degrees of freedom are available for estimating experimental error.

2.2.2 Resolution IV Foldover Designs

Resolution IV foldover designs are easily constructed by "folding

over" a resolution III design, i.e., the design matrix D can be written

as

-D*1

where the matrix D* is a PB design matrix. Such designs have resolution

IV and allow us to study up to k factors in N - 2k runs where N is a

multiple of eight. In these designs unbiased estimates of main effects

can be obtained even if two-factor interactions exist.

-9-



2.2.3 Additional Remarks

For screening in the unsaturated/saturated case, resolution III and

IV designs usually suffice. A resolution IV design, of course,

provides more reliable information than a resolution III design but re-

quires twice as many runs. If the simulation user is willing to invest

in more than k but less than 2k runs, he or she may wish to consider

other possible main-effects designs, such as "D-optimal" designs. For

construction of D-optimal designs we refer the reader to the extensive

literature on these designs; see, for instance, Box and Draper (1971),

Dykstra (1971), Mitchell (1974), and St. John and Draper (1975). We

should remark, however, that PB designs are D-optimal for their number

of runs. Another interesting design optimality criterion is that of

"tr(L)-optimality" for detecting the presence of two-factor interactions.

These designs are studied by Morris and Mitchell (1983).

2.3 The Supersaturated Case

The supersaturated case arises when there is a severe limitation

on the number of runs available for screening. Such situations are fre-

quently encountered in simulation studies, especially in the analysis of

large-scale models. The design situation of fewer runs than factors has

received relatively little attention in the statistical literature, how-

ever. In fact, the performance characteristics of the supersaturated

methods presently available are largely unknown.

In the following subsections we describe four basic types of designs
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that have been proposed for use In supersaturated situations. These

are: random balance (RB) designs, systematic supersaturated (SS) de-

signs, group screening (GS) designs, and RB/PB combination designs. Each

of these design strategies is characterized by having an equal number

of runs at the high and low levels of each factor. These designs, there-

fore, are of resolution II. That is, main effects are not confounded

with the overall mean effect.

2.3.1 Random Balance Designs

In a two-level RB design, each column of the design matrix consists

of N/2 +I's and N/2 -l's where N (an even number) denotes the total num-

ber of runs to be made. The +I's and -l's in each column are assigned

randomly, making all possible combinations of N/2 +1's and N/2 -I's

N(there are CN/2 in all) equally likely, with each column receiving an

independent randomization.

The principal advantage to the RB method is its flexibility; the

sample size N is fixed by the simulation analyst and can be selected in-

dependently of the number of factors, k, to be screened. A second ad-

vantage is the ease with which we can prepare RB designs regardless of

the magnitudes of N and k.

There are two main disadvantages to RB sampling. The first of

these is that factors are confounded to a random degree. Thus, one

cannot generally control the amount of confounding or interdependence

between factors. Secondly, there is no specific or unique technique for

analyzing RB designs. The simplest approach is to consider each factor

-11-



separately and apply some standard analysis technique such as a normal-

theory F-test. More sophisticated analysis methods include variable

selection procedures such as stagewise and least-squares stepwise re-

gression methods. For a more complete discussion of RB experimentation

we refer to Anscombe (1959), Budne (1959), Satterthwaite (1959), and

Youden, et. al. (1959).

2.3.2 Systematic Supersaturated Designs

Because of the random confounding that occurs in RB designs, Booth

and Cox (1962) introduced two-level designs which systematically attempt

to minimize confounding. Noting that not all design columns can be or-

thogonal when N < k, Booth and Cox constructed designs that minimize

max ci j I where cij is the inner product of design columns i and J. Pre-

sumably, SS designs are the best alternative to orthogonal designs, which

are, of course, impossible to construct in the supersaturated case.

Booth and Cox tabulated their designs for various values of N and

k(k < 36) and outlined, for other combinations of N and k, an iterative

computer procedure for generating the required designs. They admit,

however, that the cost of writing and running the program may be pro-

hibitive if k is large. An important concern, then, with SS designs is

their availability.

2.3.3 Group Screening Designs

GS designs have been studied by Li (1962), Patel (1962), and Watson
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(1961). In a GS design the individual factors are partitioned into

groups of suitable sizes. The groups are then tested by considering

each as a single factor. Because the number of groups is generally much

smaller than the original number of factors, we can usually study the

group factors in a standard orthogonal design such as a PB design. More-

over, we can repeat the grouping and testing process for any number of

stages. At a given stage, however, we repartition only those factors

within groups determined to have significant effects in the preceding

stage.

The level of a group-factor is defined by assigning the group level

(e.g., +1) to all component factors. This, of course, induces complete

confounding of the factors within a group, which is the basic idea. At

each stage of screening we can eliminate the individual factors from

those groups which appear relatively unimportant.

The main advantage of GS designs is that we can to some extent con-

trol the confounding pattern. There are two corresponding disadvantages.

First, the number of runs required by a GS experiment is not fixed but

is random. Second, the possibility exists that effects may cancel with-

in a group. As a simple example, consider two factors which have effects

that are negatives or near negatives of each other. If these two factors

are the only important factors in a group, their effects will cancel or

their combined effect may be masked by experimental error. Mauro (1983a)

and Mauro and Smith (1982) have examined the cancellation problem. Their

results, obtained under certain simplifying assumptions, tend to indicate

that cancellation does not pose a major problem to GS.

-13-



2.3.4 UB/PB Combination Designs

An RB/PB screening plan is a two-stage strategy having an RB

first-stage experiment followed by the use of a PB second-stage ex-

periment. A factor is included in the second-stage PB design only if

it is determined to have a significant effect in the first stage.

As in CS designs, a disadvantage of RB/PB designs is that the

total number of runs required is random (since the number of second-

stage runs is random). An advantage of these designs is that the use

of a PB experiment in the second stage separates any confounding between

the factors that are carried over from the RB first-stage experiment.

2.3.5 Further Discussion

Because of the lack of comparative performance data, there are

currently no definitive guidelines for the selection and use of super-

saturated screening methods. Nevertheless, of the supersaturated screening

methods presently available, the GS method has been generally recommended.

Mauro (1983b), however, has recently pointed out certain practical con-

siderations that make group screening less attractive as a technique for

factor screening.

The performance characteristics of RB and RB/PB designs have been

studied by Mauro and Smith (1984). They determined that RB/PB strategies

perform better than RB strategies in those situations where it is impor-

tant that Type I error (i.e., the chance of classifying unimportant fac-

tors as important) be maintained at a low level. In comparing SS with

-14-



RB designs, Booth and Cox (1962) concluded that unless k < 2N, SS

designs have little advantage over RB designs.

3. INVESTIGATING THE FUNCTIONAL RELATIONSHIP

In many cases the relationship between a simulation response y

and the k factors x,...,xk can be expressed as

y-g(x 1,.... xk ) + E

where g is an unknown function and E denotes a random error component.

We often desire to know what this relationship is. In other words,

we wish to determine the functional form of g(x) where x=(xl,x2,...xk).

In the ensuing discussion, we assume that both y and the x 's are

not only quantitative, but also continuous. Furthermore, we assume that

the error component E is normally distributed with mean 0 and variance

02, where 02 is unknown. Thus, the expected value of any observed re-

sponse y corresponding to x is:

E(y) - g(x).

Under these assumptions response surface methodology, or RSM for

short, proves valuable. RSM, which is essentially a blending of sta-

tistical experimental design and regression analysis, has its foundation

in a paper by Box and Wilson (1951). The terminology "response surface"

derives from the fact that the mean response lies on a surface in (k+1)

-dimensional space.

In industry RSM has often been applied to two general problems
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associated with response surfaces. These are:

(a) Describing the response surface in some region of interest

and (b) Determining the values of the factors which produce the
optimum response.

This section addresses the former topic; the next section discusses the

latter topic. A detailed description of RSM and its applications is

available in Davies (1978) or Myers (1971).

Basic to RSH is the 2
k- p fractional factorial which is an exper-

imental design consisting of a specific fraction (1/2p) of the 2
k pos-

sible points which form a full 2k factorial experiment. In accordance

with our previous discussion, we assume that the levels of each factor

in the fractional factorial are coded ±1.

Under the assumption that the function g may be expressed in a

Taylor series expansion about a point Ko_(xlO,...,XkO), its value at a

point x-(xi,...,x k) is given by

k k '2

k 1212

E (x -x )(x -x ) + . .+0 I io j jo Vx ixj

where the notation (.)x indicates that the quantity in parentheses is
-o __o

to be evaluated at the pointao. It should be noted that by rearranging

terms, g may be expressed as a polynomial:

k kk
g(x) +EBix,+ EB.Jxix.+. . . (3.1)

-16-



Depending upon the region of interest to the experimenter (i.e.,

the simulation user), it may be possible that a first-order polynomial

provides a good approximation to g(x) within that region. We can use

a 2k - p fractional factorial of at least resolution III to fit a first-

order equation. This would, of course, yield the estimate

k
g(x)- 0 Zb x i

where b is an estimate of "

The b Is are obtained by the method of least squares through the

use of the equation

b-(X'X)-X'y (3.2)

where b is a column vector of the b 'S, y is a column vector where the

th thj entry consists Qf the value of the response corresponding to the j-

run, and X is the matrix X[1,D]. Here I denotes a column vector of +I's

and D is the design matrix.

The estimates b are uncorrelated and, among all unbiased linear

estimates, have minimum variance. Although other designs (e.g., the

simplex designs studied by Box (1952)) also provide uncorrelated, minimum

k-pvariance estimates, the 2 fractional factorial has the added advantage

of being able, by the addition of specific points, to evolve directly to

a second-order design which can be used to estimate quadratic effects

(the B0 js). This proves valuable if it is determined that a first-order

approximation is not adequate.

Because simulation runs are usually at a premium, it is a good Idea
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to use the smallest possible 2k-p fractional factorial of resolution

III. These designs are easily obtained; rules for their generation

are given in Box and Hunter (1961), for example. The number of runs,

N, required by these designs is, of course, given by N-2k- p where p is

the maximum integer selected such that 2k-p > k.

As a check on how well a first-order approximation fits the true

response surface, a lack-of-fit test may be conducted. In order to test

lack of fit, the center point of the fractional factorial should be run

in addition to the N points in the 2
k- p fractional factorial. More-

over, to obtain degrees of freedom for testing lack of fit, the center

point should be replicated, i.e., run a number of times. If this point

is replicated m times, then there will be m-i degrees of freedom for

the appropriate error term for testing lack-of-fit.

It can easily be shown that for a 2 k-p fractional factorial aug-

mented with m runs at the center point, the estimated coefficients boo

b . ... bk are given by

N m
b 0 (EY + ZY )/(N4m)

N
and bi 1 Ey x IN (i-I ... ,k)

i i "

where yj denotes the observed response for the j run in the fractional
factorial

th
YO,r denotes the observed response for the r-- run at the center

point, and

th
x i denotes the (Ji- entry (either a +1 or a -1) in the

design matrix.
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Lack of fit can be obtained and tested from an analysis of vari-

ance decomposition of the overall variation in the observed simulation

runs corresponding to the fractional factorial points and to the cen-

ter points. The replicated runs at the center point provide the "pure"

error sum of squares given by

m m
SSeor -E r[E yo r)/ml/(m-l).

e l r-1 'rrI ~

The complete partition of the total sum of squares and the N+m degrees

of freedom is given in Figure 1.

It can be shown that the sum of squares due to bit denoted by SSbit

is given by

(N4m)b 2  10
Sil [Nb-  i i-l.. k

The "pure" quadratic sum of squares SS (resulting from contributionsq

of terms of the form x2) is given by

SSq a N(j F4C) 2/(m),

where YF denotes the average response over the N points in the frac-

tional factorial and YC denotes the average response over the m runs

at the center point. We see from Figure I that the cross-products sum

of squares SSc, arising from the terms of the type (1Ij), is not

available when knN-1. If, however, k<N-1, this term may be obtained

most easily by subtracting all other sums of squares from the total

sun of squares, SSt , where
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Source Degrees of Freedom Sum of Squares Mean Square

b SSb MSbo-SSbo

b SS MS bSS
b ' b b I

bk bSSbk MSbk-SS bk

Lack of Fit

Pure Quadratic I SS MS - SS
q q q

Cross Products N-k-I SS MS -SS /(N-k-1)c c c

Pure Error 0-1 SS MS eSS e/(m-l)

Total N+m SSt

Figure 1. Partition of the Sums of Squares and the
Degrees of Freedom in the Fractional
Factorial and Center Points
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N m

1 j1 1 0O,r.

Under the hypothesis that a first-order fit is adequate, each of

the two lack-of-fit terms SS and SS should measure only random error.q c

Therefore, the corresponding mean squares MSq a SSq and MSc = SS c/(N-k-l)

should be approximately the same size as the pure error mean square,

MS SS /(m-l).
e e

Lack of fit may be judged by the appropriate F-tests involving

the ratios MS /MSe and MS /MS . These ratios may be compared with theq e c e

upper C points of F-distributions with (1,m-l) and (N-k-I, m-I) degrees

of freedom, respectively. The significance level a is, of course, se-

lected by the experimenter, although a-.05 is an old standby.

If no lack of fit is indicated by either F-test, the fitted func-

tional equation may be used, within the factorial region, as a descrip-

tion of the unknown function g(x). A significant lack of fit, however,

indicates that the first-order model does not provide an adequate ex-

planation of the observed data. In this situation our next step would

be to take curvature of the response surface into account by fitting a

second-order model of the form:

k kk
y = 80 + 8 x I+ £ x x .

This may be accomplished by adding the 2k axial points (±Y,O,...,O),

(O,±y,...,O),...,(OO,...,±y) to the existing fractional factorial

points and center points, in order to complete what is known as a cen-
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tral composite design (CCD). This design has a number of excellent

properties. For a more detailed discussion of the CCD, including how

to choose the value of y, see Myers (1971).

As an aside, it should be noted that the decision to add axial

points is not made until after the data resulting from the fractional

factorial and center points is analyzed. In many experimental situ-

ations this would dictate the necessity for statistical blocking be-

cause the two sets of observations are not made under homogeneous con-

ditions. Fortunately, in simulation experiments we need not worry about

this, because the underlying conditions (except, of course, for any

generated random numbers) will not change.

4. OPTIMUM-SEEKING

Often the goal of simulation experimentation is not to describe

the response surface in a given region, but instead to obtain an op-

timum response. In other words, the objective is to determine the

values of x - (Xl,...,xk) that maximize (or minimize) the unknown func-

tion g(x).

In a sense, this type of problem-solving situation is similar to

an optimization problem to be solved by mathematical programming tech-

niques. The major difference is that no explicit objective function is

stated and, in fact, exists only implicitly in the multitude of com-

puter instructions in the programs comprising the simulation. Thus,

the task of finding the best solution cannot rely on those analytical

methods which are applicable when an explicit objective function exists.
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Instead, a search of the relevant factor space must be made.

In many cases the search for the best simulation response is

conducted by an analyst who estimates factor values which he/she be-

lieves correspond to a reasonably good solution. The analyst then

uses these values as input to the simulation and observes the cor-

responding response. He/she may then postulate new factor values and

repeat the process a number of times. Unfortunately, the analyst's

search has a tendency to turn into a trial-and-error process involving

a large amount of analyst effort and computer time.

As an alternative, a search algorithm may be used for exploring

the factor space. Smith (1973) examined seven search algorithms and

concluded that an RSM-based tended to be the best choice. However,

it is not without drawbacks. For example, an RSM-based search may

yield a local optimum rather than a global optimum if local optima

exist.

Optimum-seeking via RSM may involve up to four phases, which are:

(1) First-order design phase

(2) Steepest ascent phase

(3) Second-order design phase

(4) Ridge analysis phase.

In the first-order design phase we must select the initial interval of

values to be considered for each factor. Estimates of the first-order

effects within the initial region defined by the specified intervals

may be obtained from a 2k-p fractional factorial. Assuming there is no

lack-of-lit, the estimated coefficients (bl,....,bk) indicate the direc-

tion in which maximum improvement in the response is predicted. This
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direction is known as "the path of steepest ascent."

Simulation runs corresponding to steps out on this path are then

made. These runs should be made cautiously since the prediction be-

comes less reliable as the distance from the initial region increases.

(Selection of appropriate step size is more an art than a science. See

Davies (1978) for an example.) When the observed responses worsen, the

process outlined in the previous paragraph is repeated unless lack-of-

fit for the first-order model is noted. In that event, the existing

fractional factorial is augmented by axial points to form a CCD. In

this second-order design phase the resulting estimated second-order

equation may then be used to predict the factor values which yield the

best response. If these values fall within the experimental region,

a corresponding simulation run should be made. Otherwise, the best

direction in which to proceed should be determined, with simulation runs

then conducted in that direction. This involves the ridge analysis

phase. Ridge analysis (Draper (1963)] is the analogue of the steepest

ascent procedure used with the fitted first-order equation.

5. APPLICATION OF RSM

In the two previous sections we have only briefly outlined how

RSM may be used in the simulation situation. The best bet for the

simulation user who wishes an adequate background in RSM for use either

in investigating the functional relationship in a given region (Section

3) or in optimum-seeking (Section 4) would be to read the statistical,

rather than the simulation, literature. A thorough study of the per-
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tinent sections of Cochran and Cox (1957), Davies (1978), and Myers

(1971) should provide the information necessary for applying RSM tech-

niques. Needless to say, this implies a large investment of time and

effort, an investment which most people cannot afford.

There is, however, an excellent alternative. That alternative is

to consult a statistician who is versed in the practical and theoretical

aspects of experimental design. As an aside, it should be noted that

because of the independence of RaM from the simulation itself, it is

feasible to automate RSM application to a large degree. In fact, Smith

(1976) has developed a modular computer program, based on RSM, for

optimum-seeking in the simulation situation. This FORTRAN program,

which may be used for constrained as well as unconstrained optimum-

seeking, is designed to function as an executive prograw which may be

interfaced with an existing FORTRAN-based simulation. Application of

the automated RSM program requires only minor modification of any simu-

lation with which it is to be used. Although not a panacea, this pro-

gram might prove useful.

6. VARIANCE REDUCTION TECHNIQUES

In Section I we mentioned that simulation users can, to a cer-

tain degree, control the random number streams used in simulation ex-

periments. The basic idea of variance reduction techniques (VRTs) is

to exploit this control in order to increase the precision of the simu-

lation results. The following two simple examples are often used to
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illustrate the potentially beneficial effects of such techniques.

Example 1: Let X1 and X2 denote the outputs of two different

system variants in the same simulation model. The statistic

W=X1-X2 is an unbiased estimator of the difference between

the two mean responses and has variance given by VAR(W) =

VAR(X1 )+VAR(X2 )-2COV(XI,X 2). If we were to use independent

streams of random numbers in the two different simulations,

we would expect COV(XI, X2 )-0. If, however, we were deli-

berately to use the same stream of random numbers in the

two situations, we would expect COV(X 1 ,X2)>O. Thus, W would

have a smaller variance than would occur with independent

streams.

Example 2: Let Y and Y2 denote two outputs of the same sys-

tem variant in a simulation model. The statistic Z-(YI+Y 2)/2

is an unbiased estimator of the common response mean and has

varaiance given by VAR(Z)-VAR(YI)/4+VAR(Y2) /4+COV(Y1 ,Y2 )/2.

If we were deliberately to use random input streams that were

negatively correlated, we would expect COV(Y1 ,Y2) <O. Here, Z

would have a smaller variance than would occur with independent

streams.

The two variance reduction strategies illustrated in Examples I

and 2 are known as common random numbers and antithetic variates, re-

spectively. These methods are the two simplest, most straightforward,

and most widely applied VRTs. For an excellent discussion of these two

techniques we refer the reader to 3chruben (1979) and Schruben and

Margolin (1978). As noted by Schruben (1979), variances are not reduced

uniformly by the use of these techniques but are merely shifted from

more important estimators to less important estimators. For instance,

in Example 1, although VAR(XI-X 2) is decreased, VAR(XI+X2) is increased

by a corresponding amount.
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In addition to common random numbers and antithetic variates,

other principal VRTs include importance sampling, conditional expec-

tations, stratified sampling, selective sampling, and control variates

(or regression sampling). Detailed discussions of these techniques

are presented in Kleijnen (1974) and Law and Kelton (1982). See also

Wilson (1983). These techniques vary in their complexity and appli-

cability. In general, the use of these VRTs involves replacing or

modifying the original sampling procedure, or using the same sampling

process but employing a more sophisticated estimator.

It has been demonstrated in the literature that VRTs (in par-

ticular, common random numbers and antithetic variates) can, when ap-

propriately applied, significantly increase the statistical efficiency

of the simulation results. For example, with a judicious selection

of random number streams the variances of an analyst-specified subset

of bits, the estimates of the 's obtained by least squares via equa-

tion (3.2), can show a marked decrease compared to variances resulting

from using independent input streams.

The use of VRTs, however, is not without its drawbacks. First,

it is not always clear if the use of a VRT will result in a variance

reduction; in fact, a variance augmentation may actually result. (See.

for instance, Kleijnen (1974) and Ramsay and Wright (1979).) Second,

analysis of the output data is generally complicated by the use of these

techniques. Third, VRTs often result in increased computing costs and

analyst effort, which may offset any potential gains in efficiency.

In summary, we find ourselves somewhat ambivalent about the prac-

tical worth of VRTs in simulation. Nonetheless, we would not discourage
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a potential user of these techniques. We would, however, emphasize

that he/she should not only be aware of their potential advantages

and disadvantages, but also be intimately acquainted with both the

simulation and the VRTs under consideration.
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